
Developing Products on

“Internet Time”: The Anatomy of

a Flexible Development Process

Alan MacCormack • Roberto Verganti • Marco Iansiti
Harvard Business School, Boston, Massachusetts 02163

Politecnico di Milano, Milan, Italy
Harvard Business School, Boston, Massachusetts 02163

amaccormack@hbs.edu • roberto.verganti@polimi.it • miansiti@hbs.edu

Uncertain and dynamic environments present fundamental challenges to managers of the

new product development process. Between successive product generations, significant

evolutions can occur in both the customer needs a product must address and the technologies

it employs to satisfy these needs. Even within a single development project, firms must

respond to new information, or risk developing a product that is obsolete the day it is

launched. This paper examines the characteristics of an effective development process in one

such environment—the Internet software industry. Using data on 29 completed development

projects we show that in this industry, constructs that support a more flexible development
process are associated with better-performing projects. This flexible process is characterized

by the ability to generate and respond to new information for a longer proportion of a

development cycle. The constructs that support such a process are greater investments in

architectural design, earlier feedback on product performance from the market, and the use of

a development team with greater amounts of “generational” experience. Our results suggest

that investments in architectural design play a dual role in a flexible process: First, through

the need to select an architecture that maximizes product performance and, second, through

the need to select an architecture that facilitates development process flexibility. We provide

examples from our fieldwork to support this view.

(New Product Development; Software Development; Innovation; Flexibility; Internet)

1. Introduction
Over the last two decades, a rich stream of studies

has broadened our understanding of how to effectively

manage new product development projects (e.g., Katz

and Allen 1982, Clark and Fujimoto 1991, Cusumano

and Nobeoka 1992, Cooper 1995, Iansiti 1997). These

have demonstrated that a wide range of decisions

regarding organization structure, team composition,

and process are associated with development perfor-

mance in terms of lead time, cost, and quality. Many

of these studies have been undertaken in environments

where the target market and the technologies to be

employed in a product are relatively well understood.

Asaresult, themodelsderivedfromthemportraydevel-

opment as a sequential process of design followed by

execution.Effectiveprojectsarecharacterizedbyastruc-

ture thatminimizes changes to the product design once

the execution stage has begun (Cooper 1990).

Uncertain and dynamic environments,1 however,

present fundamental challenges to these accepted

1 By uncertain, we mean environments in which future evolutions

in markets and/or technologies are hard to predict. By dynamic,

we mean environments in which these evolutions occur rapidly.

0025-1909/01/4701/0133$5.00
1526-5501 electronic ISSN

Management Science © 2001 INFORMS
Vol. 47, No. 1, January 2001 pp. 133–150

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

models of the new product development process. In

such environments, significant changes can occur in

both the customer needs a product must address and

the technologies it employs to satisfy these needs

between successive product generations. Therefore, in

each project there is a requirement to understand how

these changes should be incorporated into the design.

An even greater challenge comes from the need to

respond to new or changing information during a

development project. Without this ability, managers

risk developing a product that is targeted at a mar-

ket where customer requirements have long since

evolved.

Previous authors have developed theoretical mod-

els which demonstrate the value of greater flexibility

in a design process faced with uncertainty (Krishnan

et al. 1997, Bhattacharya et al. 1998). Most of these

models, however, rely on the trade off of bene-

fits from delaying commitment to certain parts of

a design against the costs that such delays conse-

quently impose on a project. As a result, they employ

a static optimization perspective, with an assumption

that the costs of various actions are out of the imme-

diate control of the development team. This study, by

contrast, attempts to examine the underlying mecha-

nisms through which firms directly influence the flex-
ibility of their development processes (and hence the

costs assumed to be fixed in many theoretical mod-

els). Building on recent exploratory work in “high-

velocity” environments (Eisenhardt and Tabrizi 1995,

Iansiti and MacCormack 1997), we identify several

constructs that support a more flexible process and

show that these constructs are good predictors of

project performance in an industry where develop-

ment teams face extreme levels of uncertainty.

The remainder of this paper is divided into four

sections. In the next section, we describe the pre-

vailing model of product development advocated by

much academic research and discuss the challenges

this model faces in uncertain and dynamic environ-

ments. This motivates our study of several constructs

that support a more flexible process. We then intro-

duce the context for our study—the Internet software

industry—and describe the methods used to gather

data on our sample of projects. We next report our

empirical results, discussing the statistical evidence

linking process choices to a measure of project perfor-

mance. We conclude by discussing how these results

inform our understanding of how a more flexible pro-

cess is achieved in practice.

2. Models of the Product
Development Process

Many models of product development are based on

the premise that design activities are best divided into

a number of sequential project “stages” separated by

milestones called “gates” (e.g., Cooper 1990, Ulrich

and Eppinger 1995). During each stage, alternative

design decisions are explored and certain options

chosen over others that are found to be inferior.

On arrival at each gate, managers evaluate progress,

decide whether the project is to proceed, and if so

agree the foundation on which work in subsequent

stages will build. As a project moves through succes-

sive stages and gates, the design evolves in increas-

ing levels of detail, from high-level representations of

the overall concept to the details of each and every

component.

While the stage-gate process has been shown to

be effective in stable environments (Cooper and

Kleinschmidt 1996), its value has been questioned in

uncertain and dynamic environments (Bhattacharya

et al. 1998, Iansiti and MacCormack 1997). The chal-

lenges that these environments pose can be illustrated

by considering a simple model of development con-

sisting of three separate stages: concept development

(where the overall concept is defined and the product

architecture developed), detailed design (where indi-

vidual modules are designed and tested), and system-

level testing (where these modules are integrated into

a complete system and tested). In a stage-gate process,

these stages are performed sequentially: The prod-

uct concept is defined and frozen prior to the start of
detailed design, and the functionality this specifies in

each module is completed prior to the start of system-
level test (see Figure 1).

The first challenge this model faces is that it

assumes all information about potential design

choices is known or can be discovered during con-

cept development. After this stage has ended, there is

134 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Figure 1 A Stage-Gate Model of Product Development

little flexibility to change the overall design. In uncer-

tain and dynamic environments, however, firms can-

not predict every potential design choice up-front.

Instead, new information about market needs and

technical opportunities is expected to emerge as a

project proceeds. There is, therefore, a greater need to

keep the product concept open to change, maintaining

design flexibility for a longer proportion of develop-

ment. To achieve this, Stages 1 and 2 must overlap,

implying that detailed design must start before the
specification is complete.

The second challenge this model faces is that feed-

back on how the product performs as a system is not

obtained until late in a project, when the functionality

in each module has been fully developed. In uncertain

environments, however, such an approach involves

significant risk. Such uncertainties are present, for

example, when a “breakthrough” product concept is

proposed (Wheelwright and Clark 1992), given that

in such a project the ability to satisfy customer needs

remains largely unknown until customers interact

with the product in the end-use context. The fact

that such breakthroughs often require a new product

architecture heightens this uncertainty, given that the

use of unfamiliar components and interfaces increases

the probability of problematic interactions. Therefore,

in such environments there is a need to gain feed-

back from “early” system-level tests, implying that

Stages 2 and 3 must overlap (hence, the first test

of system-level performance occurs before the mod-
ules from which the system is built are complete).

Indeed, in the most flexible of processes, Stages 1 and

3 will also overlap, thereby allowing feedback from

system-level tests to have a direct impact on the evo-

lution of the product concept (see Figure 2).

Recent studies have begun to explore more flexi-

ble models of development characterized by the over-

lapping of development stages (e.g. Krishnan et al.

1997). These models are founded upon a process that

emphasizes the ability to generate and respond to

new information for as long as possible during devel-

opment. Rather than a sequential stage-gate process,

development becomes an “evolutionary” process of

learning and adaptation (Tushman and O’Reilly 1997).

Activities proceed in an iterative manner, the feed-

back gained in one cycle of experimentation being

used to guide activities in the next (Eisenhardt and

Tabrizi 1995).

The environment where flexible models of devel-

opment have been most widely advocated has been

in software development (e.g., “Incremental,” Wong

1984; “Spiral,” Boehm 1988; “Rapid Prototyping,”

Connell and Shafer 1989). These models have been

proposed to address flaws in the traditional “water-

fall” model of development, a stage-gate-type model

that emerged from efforts to control the management

of large software projects (Royce 1970). They typi-

cally employ an iterative process, founded upon the

construction of a series of prototypes used to gather

feedback on whether the design meets customer

requirements. Indeed, variations on these approaches

have been observed in a number of commercial

software firms (Cusumano and Selby 1995, Iansiti and

MacCormack 1997). However, despite the literature

describing more flexible models for developing soft-

ware, there is as yet little empirical validation that

Management Science/Vol. 47, No. 1, January 2001 135

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Figure 2 A More Flexible Model of Product Development

they result in better-performing projects. One aim of

this study is to address this shortfall.

Constructs Supporting a More Flexible Process
We consider three constructs that support a more

flexible process: greater investments in architectural

design, earlier feedback on a product’s system-level

performance, and a development team with greater

amounts of “generational” experience.

The requirement to overlap development stages in a

flexible process creates three major challenges for the

design of the product architecture. The first of these

is the need to start detailed design work prior to the
product architecture being fully defined. Achieving

this objective requires those parts of a design that are

uncertain or likely to change to be buffered from those

parts expected to remain stable. The second challenge

is the need to integrate the system prior to the com-
pletion of all of its component modules. This requires

partitioning design work in such a way that critical

elements of system performance can be demonstrated

even when some of the individual modules are only

partially complete. The final challenge is the need to

respond to new information arising during the later

stages of a project. This requires a product architec-

ture that can accept the addition of new functional-

ity as a project progresses without requiring major

changes to other parts of the system.2

In stable environments where customer require-

ments and component technologies are known with

2 The software engineering field describes such architectures as

“highly modular” and/or “loosely coupled”.

confidence at the beginning of a project, the chal-

lenges described above are not present. The pri-

mary focus for architectural design efforts is therefore

aimed quite naturally at maximizing product perfor-

mance. In uncertain and dynamic environments, how-

ever, these challenges suggest significant benefits will

be gained from an architecture that can also facilitate

greater flexibility (Parnas 1972, Ulrich 1995, Sanchez

and Mahoney 1996). The need for flexibility therefore

creates an additional design criterion that the product

architecture must satisfy. These two objectives (i.e.,

maximizing product performance and facilitating pro-

cess flexibility) are often incompatible from a design

standpoint; hence, the selection of the “optimal” prod-

uct architecture becomes a more complex problem

(Ulrich 1995). As a consequence, we assume that firms

adopting a more flexible process will allocate greater

resources to the design of the product architecture to

resolve these tensions.

Hypothesis 1. In uncertain and dynamic environ-
ments, greater investments in architectural design will be
associated with better performing projects.

While greater investments in architectural design

help facilitate a more flexible process, they do not

guarantee that a project takes maximum advantage of

such flexibility. To do this, the development process

must encompass mechanisms for both generating and

responding to new information as it proceeds. We dis-

cuss each of these objectives below.

The need to generate new information requires a

search process focused on the major sources of uncer-

tainty facing a project, whether these are related to

136 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

the underlying technologies in a product or the mar-

ket context in which this product operates. The value

of search in processes of organizational renewal has

been documented in previous research (Levinthal and

March 1981, Nelson and Winter 1982, March 1991). In

a stage-gate model of development, however, search

typically occurs only during the early project stages.

Once detailed design begins, it is no longer an active

part of the process. A more flexible process, by con-

trast, requires that search occur throughout develop-

ment. The objective is to generate early feedback on

how the product performs as a “system,” an essential

activity given that in uncertain and dynamic environ-

ments, changes to the product architecture are more

likely to be required.3

Gaining early feedback on system-level perfor-

mance requires the adoption of an architecture

in which the system’s main components can be

integrated at an early stage (as discussed above).

However, it also requires that a project establish inten-

sive links with the target market through which feed-

back on the system’s external interactions with its

operating environment can be obtained, and hence

its ability to meet customer needs. Recent research

demonstrates the value of such links, especially to the

lead users of new products and services (Von Hippel

1986, 1988). Where information about the user envi-

ronment is tacit or “sticky” (i.e., not easily captured by

traditional market research techniques) there is value

in mechanisms which facilitate the release of early

product versions to users when a project retains the

ability to change the design. These early versions pro-

vide a conduit for generating information on system-

level performance that can be used to improve the

design as the project proceeds.

Hypothesis 2. In uncertain and dynamic environ-
ments, earlier feedback on a product’s system-level perfor-
mance will be associated with better performing projects.

3 The need for a new product architecture can stem from changes

in the relative performance of different component technologies

which render older architectures obsolete (e.g., Henderson and

Clark 1990) or from changes in customer requirements which dic-

tate a new set of performance trade-offs (e.g., Christensen and

Rosenbloom 1995).

The need to respond to the new information gen-

erated through search requires that a team makes

changes to the existing design quickly and at low cost

(Thomke 1997). This objective is facilitated through

the selection of a product architecture which mini-

mizes the impact of design changes on the rest of

the system (as discussed above). However, it also

requires the ability to rapidly refine the new infor-

mation generated through search and integrate the

results into the evolving design. The academic litera-

ture suggests several mechanisms through which this

can be achieved. For example, recent studies have

demonstrated that a larger capacity for experimenta-

tion can help a team gain rapid feedback on the per-

formance of alternative solutions, and, subsequently,

to integrate this information into the design (Iansiti

1997, Thomke 1998). However, there is still a need

to identify the appropriate set of experiments to con-

duct and, subsequently, to interpret the results as they

emerge. Herein lies the role of experience.

While the value of experience is clear in environ-

ments that are stable, its value is often questioned

in uncertain and dynamic environments, given that

in such settings, knowledge of specific technologies

and applications can rapidly become obsolete. Several

authors suggest that experience can be a disadvantage
in such environments, given that inertia and rigid-

ity in problem solving may lead to the selection of

inappropriate solutions for novel problems (e.g., Katz

and Allen 1982). Still, this appears to be an overly

broad conclusion, and one that leads to unappeal-

ing managerial prescriptions. The question must be

asked, therefore, whether there are specific types of

experience that have value in uncertain and dynamic

environments.

The main challenge that highly dynamic and uncer-

tain environments generate for development teams

is the need to learn about new technical solutions

and their potential applications. Experience therefore,

has value to the degree that it facilitates these activi-

ties, allowing a team to frame and direct an effective

experimentation strategy to resolve the uncertain-

ties that arise during a project (Thomke et al. 1998,

Verganti 1999). Experience also has value to the

degree that it allows teams to integrate the new

information generated from these experiments into a

Management Science/Vol. 47, No. 1, January 2001 137

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

coherent system-level design (Iansiti 1997). We assert

that these useful forms of experience come from hav-

ing previously worked on multiple different project

generations.4 Completing multiple different projects

over different generations is likely to involve dealing

with different/changing contexts and, hence, results

in a more abstract approach to development (i.e.,

one which evolves through the lessons learned in

applying it to each new project). It also requires that

several cycles of learning have been completed at

the system-level, ensuring feedback on the impact of
design choices has been received both locally (i.e.,

through developing individual modules) and glob-

ally (i.e., through seeing how these modules per-

form as a system). We call this type of experience

“generational” experience, differentiating it from the

“context-specific” form of experience whose value

is subject to obsolescence in uncertain and dynamic

environments. Such a distinction is consistent with

work in organization theory, which shows that learn-

ing occurs at multiple levels of abstraction (Fiol and

Lyles 1985, Argyris 1977, McKee 1992). Lower-level

learning results in knowledge that can be directly

applied to a specific context, whereas higher-level

learning results in a deeper knowledge of the process

of problem solving, especially with respect to analyz-

ing new frames of reference.

Hypothesis 3. In uncertain and dynamic environ-
ments, development teams with greater amounts of genera-
tional experience will be associated with better-performing
projects.

The arguments above describe how in uncertain

and dynamic environments, we expect constructs

which underlie a more flexible process to be associ-

ated with better-performing projects. We need to be

specific, however, about the dimensions of project per-

formance that are expected to vary, as these dictate

the focus for our empirical study. The aim of a flexi-

ble process is to provide a closer match between the

design of a product, and the evolving requirements

4 We use the word “generations” to discriminate between major

new platform releases and minor derivative/incremental releases,

which typically do not involve reexamining the architecture of the

product.

that this product must address in the target market.

We therefore expect such a process will result in a

better-performing product as perceived by a customer
(i.e., when compared to the equivalent product devel-

oped using a less flexible process). Given that the

adoption of a more flexible process may require the

use of additional resources, however, it is also impor-

tant to capture data on the resource productivity of

projects. This will allow us to assess the magnitude of

any potential trade-offs that might exist when using

such a process.

3. The Empirical Setting
The analysis in this paper is based on data cap-

tured during a two-year study of product develop-

ment practices in the Internet software industry (see

MacCormack 1998 for a detailed discussion). During

this period, this industry presented tremendous lev-

els of uncertainty to developers of new products. The

industry was “created” in 1993, when the develop-

ment of a graphical interface to the Internet (at that

time, a communication network used mainly by sci-

entists, academics, and the military) established the

“World Wide Web.” Since then, its growth has been

dramatic—from less than 200 web servers in June

1993, there were over 200,000 as of January 1997 (Reid

1997). This growth has spurred the creation of hun-

dreds of new firms and applications and a variety of

alternative technical standards.

The unit of the analysis used in this study is the

project. Our research was conducted in two stages. In

the first stage, we conducted interviews with project

managers at several companies, both to understand

the specific nature of the development process in this

industry and to identify how we could operationalize

measures of the constructs supporting a more flex-

ible process. In the second stage, we collected data

through the use of a survey instrument distributed

to project managers at a sample of firms identified

through a review of industry journals. In most cases,

we visited participating firms to collect additional

descriptive data on projects. Our final sample con-

sists of 29 completed projects from 17 firms.5 These

5 We approached 39 firms to participate in the survey phase. We

followed up with phone calls and e-mails to solicit responses,

138 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

projects cover a broad range of applications, including

products, services, and development tools targeted

at both commercial and consumer users. Given this

heterogeneity, we rely on an innovative method for

assessing comparative levels of product performance

through the use of an expert panel.

The Measure of Performance: Product Quality
To evaluate the relative performance of products

in our sample, we rely upon the assessments of a

panel of experts gathered using a two-round Delphi

process (Dalkey and Helmer 1963). Similar methods

have been used in other studies where the perfor-

mance of products is not directly comparable (Clark

and Fujimoto 1991). The panel of experts consisted

of 14 industry observers from a variety of journals

and websites that review Internet software products.

Experts were asked to rate the overall quality of

products relative to other competitive products which tar-
geted similar customer needs at the time the product was
launched. Overall quality was defined as a combina-
tion of product features (i.e., the range of features the

product contained), technical performance (i.e., how

fast/easy-to-use the product was), and reliability (i.e.,

the extent to which the product operated without

failure).6 Assessments were given on a Likert scale

ranging from 1–7, 4 indicating that the product was at

parity with competitive offerings. Experts were asked

to indicate their level of knowledge of the product

(also on a 1–7 scale) and list up to three competitive

products against which their comparisons were made.

Variation among experts’ assessments of the same

product can be attributed to several factors: a lack

of knowledge of the product, a different understand-

ing of the market segment the product competes in,

eventually collecting survey data on 29 projects from 17 firms (a

response rate of 43%). We collected additional descriptive data for

22 of the 29 individual projects through face-to-face interviews con-

ducted with the project manager. The sample contains many of

the “defining products” of the Internet age, including Netscape’s

Navigator 3.0 and 4.0 browsers, Microsoft’s Explorer 3.0 and 4.0

browsers, Yahoo!’s My Yahoo! service, etc.

6 Our aim was to understand how a user would rate the perfor-

mance of the product, not how a software engineer would. We

therefore excluded some aspects of software performance (e.g.,

maintainability) cited in the literature.

ambiguity in the scale for assessment, and actual vari-

ation in experts’ subjective judgments. The second

round of the Delphi process was aimed at eliminating

variability because of the first three of these. For each

product, we provided panelists with the top three

competitive products against which knowledgeable

experts (i.e., those scoring 4 or higher) had made their

assessments. We also provided the mean scores for

each individual product, and the mean scores overall.

Panelists were asked to review these data and submit

a new evaluation for each product. As compared to

the first round, the second round of the Delphi gen-

erated a convergence in experts’ opinions on individ-

ual products while creating additional variance in the

spread of mean performance outcomes across prod-

ucts.7 In the following analysis, we use the mean score

provided by knowledgeable experts as our dependent

variable.8

Control Variable: Resources. We capture a mea-
sure of the development and test resources allocated

to each project to control for the potential impact

of resources on product quality.9 This measure is

adjusted to reflect the fact that the complexity of prod-

ucts in the sample varies. We adjust for this differ-

ing complexity by modeling the resources allocated

to each project as a function of both the lines of new

code developed in each project and a dummy which

indicates whether the project was to develop a service

(see Appendix A).10 The residuals from this model are

used as our control.

7 A third round with two pilot products showed that experts where

not willing to change their assessments further and that iteration

of the process would therefore not generate additional convergence

(Linstone and Turoff 1975).

8 The highest variance in experts’ judgements of product quality

came from experts who rated their knowledge of the product as

equal to 3 or lower. We therefore decided to focus only on experts

scoring 4 or higher.

9 All else equal, one might expect a trade-off to exist between

resource productivity and product quality.

10 Projects to develop new services (e.g., websites) were observed to

achieve higher productivity than other projects in terms of lines of

code per person-day because of their use of different programming

languages and commands.

Management Science/Vol. 47, No. 1, January 2001 139

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Measures of the Development Process
We capture four measures of the development pro-

cess: investments in architectural design, early market

feedback, early technical feedback, and generational

experience.

Investments in Architectural Design. In Internet

software development projects, the product architec-

ture must, on the one hand, optimize the operating

performance of the product (in terms of memory

usage, speed, etc.), yet on the other, it must facilitate

making changes to the product design as new infor-

mation emerges as a project proceeds. We assume

that the resources allocated to architectural design

activities, relative to those allocated to development

and test activities, reflect the emphasis given to

resolving these potentially conflicting objectives. To

capture the relative levels of investment in architec-

tural design, we asked project managers to break

down the resources devoted to each project in four

categories: project management, architecture design,

development, and test. We then calculated the ratio

of architecture design resources to development and

test resources. Given that the size of products in the

sample varies significantly, we adjusted this ratio to

control for scale effects.11 This was done by modeling

the ratio as a function of the lines of new code devel-

oped in each project (see Appendix B). In our analysis,

we use the residuals from this model as our measure

of investments in architectural design, controlled for

scale.

Early Market and Technical Feedback. Three mile-
stones stand out as particularly important in Inter-

net software development projects, given that each

signifies a point at which new information becomes

available to the project team. These milestones are:

the point at which the first prototype is presented to

customers, the point at which the various component

modules are first integrated into a partially working

system, and the point at which the first beta release is

made available to customers.12

11 All else equal, one might expect larger projects to allocate propor-
tionately fewer resources to architecture design.
12 We define a prototype as a version of the product which cannot

function as a system (e.g., a mock-up of the user interface). We

The first prototype is typically shown to customers

during the concept development stage. It represents

the first time that the project team receives feedback

from customers on the overall product concept. Given

the uncertainty surrounding the requirements that

users have of new applications in this industry, this is

a critical activity. Early feedback from such prototypes

allows a team to make modifications to the design of

the product architecture during the period it has the

most flexibility to do so—when detailed design work

has not yet progressed significantly.

The next major milestone in a project is system inte-

gration, when the various component modules in the

design are first integrated into a partially working

version of the system. This milestone typically occurs

part way through the detailed design stage, represent-

ing the first point at which the project team receives

feedback on how modules in the design interact and,

consequently, how well they perform as a system.

Given the uncertainty surrounding the nature of the

product architecture in this environment, early feed-

back on system-level performance is an essential part

of development. Problematic interactions, which are

hard to predict ex ante, often emerge for the first time,

requiring that the team revisit design decisions made

earlier in the project. Given that this first version of

the system is often used as the foundation on which

subsequent functionality is built, the importance of

achieving this milestone early is magnified.13

The final milestone marking the generation of new

information about the design is the first beta release,

which occurs sometime after the first system inte-

gration. This point represents the first time that the

project team receives feedback from customers on the

functioning of the product in the end-use applica-

tion context (even though the product is typically

not functionally complete). Given the uncertainty

define a beta version as a version of the product that contains at

least part of all the core component modules (even though these

modules may be functionally incomplete), are hence can function

as a system. With this definition, the first beta version can never be

released before the first system integration has occurred.

13 Changes and additions to this first version are made through reg-

ular system “builds,” during which new code is integrated into the

design and regression tests run to ensure these new additions work

well with the main code base.

140 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

surrounding potential interactions between the prod-

uct and its operating environment, early feedback

from beta versions is an important activity in this

industry.14 This feedback allows a team to “synchro-

nize” the emerging design with the evolving needs of

the market, generating new information on both the

performance of existing features and on the potential

for new features which could significantly enhance

the product offering.

The milestones described above all refer to points

at which new information on product performance

becomes available to a project team. We expect that

projects in which they occur earlier (thereby having

greater influence on continuing development activi-

ties) will outperform others. The way in which we

operationalize this concept is to capture the percent-

age of the product’s functionality that has been devel-

oped when each milestone is reached.15�16 We assert

that projects reaching these milestones with less of the
product’s functionality having been completed will

outperform others.17 Given that this measure is likely

to be sensitive to the size of a project, we control for

scale effects by modeling the percentage of product

functionality developed at each milestone as a func-

tion of the lines of new code developed in each project

(see Appendix B). In our analysis, we use the residu-

als from these models as our measures for how early

each milestone occurs, controlled for scale.

14 Projects may release multiple beta versions prior to launch. The

most significant milestone however, is the first beta release, which

marks the start of the period when customers can actively con-

tribute to development activities.

15 Using the percentage of a project’s overall lead time which has

elapsed at each milestone would be misleading, given that projects

that experience delays in later stages would appear to reach these

milestones earlier.

16 The functionality contained in the product at launch is defined

as 100%. We asked project managers to assess the percentage of

functionality that existed in the product at each of the three major

milestones, assuming that the functionality when the project started

was 0%.

17 One may ask, why not reach a milestone with no functionality?

Given the way we define two of these milestones however, this

is not possible. By definition, the first system integration and the

first beta release require a working version of the product to be

available, even if this version is incomplete.

The measures of product functionality developed

at each milestone turn out to be correlated (see

Appendix D).18 For modeling purposes, one would

normally proceed by developing a composite vari-

able to capture the common variance across all three.

In this study, however, we wanted to preserve the

conceptual distinction between the milestones which

signify new information arising from customers (first

prototype and first beta) and the system integration

milestone, where the new information generated is

primarily of a technical nature, relating to interactions

between different modules. We therefore developed a

composite variable based on the measures of product

functionality developed at both first prototype and

first beta (referred to as early market feedback), and

retained the measure of product functionality devel-

oped at system integration (referred to as early tech-

nical feedback) for use in our analysis.19

Generational Experience. A flexible process

requires that as development proceeds, changes to the

evolving design can be made quickly and at low cost.

In our theoretical motivation, we argued that one of

the mechanisms through which this objective can be

achieved was through a development team which has

greater amounts of generational experience. We cap-

tured the amount of generational experience within

each development team by asking project managers

to assess the proportion of team members whose past

experience with software development projects fell

into the following four categories: no previous expe-

rience, one generation of experience, two generations

of experience, and greater than two generations of

experience. In our analysis, we use the final cate-

gory, the proportion of team members with greater

than two generations of experience, as our indicator

18 This is to be expected, given the way we define these milestones. A

beta version cannot be released until the system has been integrated;

hence, an early beta release requires an early system integration.

Note, however, the reverse is not true. Early system integration does

not dictate that a beta version is released soon thereafter.

19 The composite measure for early market feedback was con-

structed by taking the first component from a principal component

analysis of the two sets of residuals obtained when predicting prod-

uct functionality at first prototype and first beta release with the

logarithm of new code.

Management Science/Vol. 47, No. 1, January 2001 141

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Table 1 Descriptive Statistics

Variable Description Mean S. Dev. Min Max

Quality Mean experts assessment of quality 4�46 0�49 3�50 5�52
relative to competitive productsa

Code Size of application (lines of code) 376K 459K 5K 1.5Mn

New Code Amount of new code developed in 155K 205K 2K 750K
project (lines of code)

Resources Total development and test resources 5369 10771 274 43200
consumed in project (person-days)

Architecture Ratio of architecture design resources to 0�26 0�20 0 0�67
Design Effort development and test resources

Market Feedback: Percentage of product functionality 41% 24% 10% 90%
1. First Prototype included in the first prototype

Tech. Feedback: Percentage of product functionality 61% 22% 20% 100%
First Integration included in the first system integration

Market Feedback: Percentage of product functionality 77% 19% 34% 100%
2. First Beta included in the first beta release

Generational Proportion of team with greater than two 52% 35% 0% 100%
Experience generations of project experience

a = Only knowledgeable experts (i.e., experts with confidence on their assessment ≥4) are considered

of generational experience.20 Note the emphasis here

on the number of project generations, rather than

on years of experience. We therefore discriminate

between a developer that has worked on a single

technology/project for many years and a developer

that has worked on several complete projects, even

if each lasted only a few months. The latter, in our

view, has a better experience base for developing

products in an uncertain and dynamic environment.

Descriptive Statistics
Table 1 summarizes the data on our sample of

projects. To make the table more meaningful, mea-

sures of the development process are reported here

with their original values, rather than their values

after adjusting for scale/complexity effects (descrip-

tive statistics and a correlation table for the adjusted

variables are given in the appendices). Note in partic-

ular the wide variation in the percentage of product

20 Note that these experiences are not limited to the previous ver-

sion of this specific product. Managers were asked to include expe-

riences obtained through the completion of any software project.

Given that most Internet software products in 1996–1998 were first

or second generation, most of the experience we capture was nec-

essarily gained with different products. This measure is therefore

not connected to the maturity of products in this industry.

functionality completed at each milestone. For exam-

ple, one project did not show a prototype to cus-

tomers until almost all of the product’s functionality

had been developed. In contrast, another distributed

a working version of the system to customers as a

beta release when only 34% of the functionality was

complete. We expect the latter project would have had

a significant advantage in integrating new informa-

tion on evolving market requirements into the prod-

uct design as development progressed.

4. Empirical Analysis
Our modeling approach involved the use of OLS

regression to predict the mean quality of products

in the sample (as rated by knowledgeable experts),

using a control for resources and measures of the

development process.21 We tested the robustness

of results using several other modeling approaches

which account for both the variation in experts’

21 We conducted a number of tests to establish whether the char-

acteristics of the specific project being undertaken influenced the

process measures that we captured. Specifically, we categorized

projects based upon whether they were real-time systems, applica-

tions, or websites, and also captured the percentage of new code

developed in each project. None of these variables were associated

with significant differences in any of our process measures.

142 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Table 2 Models Predicting Product Quality with Single Process Measures

MODEL I II III IV V VI VII VIII

Constant 4�417∗∗∗∗ 4�410∗∗∗∗ 4�440∗∗∗∗ 4�438∗∗∗∗ 4�457∗∗∗∗ 4�456∗∗∗∗ 4�303∗∗∗∗ 4�193∗∗∗∗

�0�085� �0�081� �0�073� �0�071� �0�084� �0�084� �0�163� �0�180�

Control: 0�304∗ 0�244∗ 0�150 0�260
resourcesa �t = 1�84� �t = 1�71� �t = 0�89� �t = 1�33�

Architecture 1�378∗∗ 1�732∗∗∗

design effortb �0�589� �0�594�

Market feedback: −0�310∗∗∗∗ −0�356∗∗∗∗

First proto/betab �0�076� �0�079�
Tech. feedback: −0�011∗∗ −0�012∗∗

First integrationb �0�005� �0�005�

Generational 0�002 0�004
experience �0�003� �0�003�

R-squared (adj) 15�2% 22�8% 35�6% 39�9% 14�8% 14�2% 0% 2�2%

F -ratio 5�47 4�70 16�50 10�30 5�88 3�32 0�80 1�29

Df 24 23 27 26 27 26 25 24

∗∗∗∗p < 0�1%� ∗∗∗p < 1%� ∗∗p < 5%� ∗p < 10% NB: Unless stated, numbers in brackets are standard errors.
a = adjusted for product complexity; b = adjusted for scale effect.

assessments of quality, and the differing confidence

levels of experts.22 We are satisfied the results are

robust to these different analytical methods; hence, for

simplicity, we report only the OLS results here.23

Table 2 describes a series of models predicting

product quality using single measures of the devel-

opment process. We report results both with and

without the use of resources as a control. Note that

a model predicting product quality using resources

alone is not significant. Our hypothesis is that if such

a relationship exists, it might emerge only after the

variance attributable to differences in the develop-

ment process has been explained.

Models I and II test the association between prod-

uct quality and investments in architectural design.

In both these models, this variable is significant, indi-

cating that projects which allocate proportionately

22 Other modeling approaches included: OLS regression using a

weighted mean quality score obtained by weighting expert ratings

by level of confidence, WLS regression using data on the stan-

dard error of quality ratings to weight observations, OLS regression

using data from each expert as an independent outcome �n= 204�,
WLS regression using data from each expert as an independent out-

come, and weighting expert rating by level of confidence �n= 204�.
23 In our regression models, significance levels are reported for two-

tailed tests.

greater resources to the design of the product archi-

tecture tend to result in higher quality products.

In Model I, this variable explains over 15% of the

variance in outcomes. In Model II, which includes a

control for resources, over 22% of the variance in out-

comes is explained. In this latter model, a weak trade-

off between quality and resources is apparent, and the

significance of investments in architectural design is

noticeably stronger.

Models III and IV test the association between

product quality and early market feedback. In both

these models this variable is significant, indicating

that projects in which greater proportions of function-

ality are developed after feedback is received from

the market tend to result in higher-quality products.

In Model III, this variable explains over 35% of the

variance in outcomes. In Model IV, which includes

a control for resources, over 39% of the variance in

outcomes is explained. In this latter model, a weak

trade-off between quality and resources is apparent.

Models V and VI test the association between prod-

uct quality and early technical feedback. In both these

models this variable is significant, indicating that

projects in which greater proportions of functionality

are developed after the first system integration tend

to result in higher-quality products. In Model V, this

Management Science/Vol. 47, No. 1, January 2001 143

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

variable explains over 14% of the variance in out-

comes. In Model VI, which includes a control for

resources, similar results are seen.

Note that the explanatory power of early techni-

cal feedback is significantly lower than that of early

market feedback, despite the high correlation between

these variables (see Appendix D). Our interpretation

of this result is that even though there is signifi-

cant uncertainty in this environment, these uncer-

tainties are manageable from a technical standpoint,

given that the nature of the underlying technology

(i.e., software code) is relatively well understood by

firms. What is not well understood, however, is the

requirements that customers have of products, both in
terms of the overall architecture which best captures

their desired performance trade-offs, and the end-use

context in which the product must operate. While

the development process must possess mechanisms

to identify problematic interactions between technical

components, the most troublesome interactions are in

fact more likely to arise between the product and its

operating environment. With such a view, an early

integration of the system is only the first step in estab-

lishing a link to this environment through which a

project can begin receiving feedback.

Models VII and VIII test the association between

product quality and generational experience. In nei-

ther of these models is this variable significant. This

result was surprising, given that our fieldwork had

indicated that this type of experience was extremely

valuable in a flexible process. We heard many exam-

ples of how team members’ experiences from pre-

vious projects helped them to rapidly interpret new

information and subsequently add new functionality

to a design as a project progressed. This suggested,

however, that the benefits of generational experi-

ence might manifest themselves primarily through

a reduction in the resources required to develop a

product (as opposed to an increase in product qual-

ity).24 This assertion is supported by the correlation

between resources and generational experience (see

Appendix D). Indeed, variations in the proportion of

24 The productivity of different software developers (e.g., as mea-

sured by lines of code per person-day) has been shown to vary

widely, sometimes by an order of magnitude (Cusumano 1991).

team members that have completed more than two

previous project generations explains over 24% of the

variance in resources. These results suggest genera-

tional experience might be significant in a model pre-

dicting product quality if a trade-off between quality

and resources is also present (i.e., the benefit can then

be taken either as a resource saving or an increase in

quality). We therefore continue to include this indi-

cator as a predictor in more complex models in case

such a relationship is found.25

Table 3 describes a series of more complex models

predicting product quality using multiple measures of

the development process. We report all results using

resources as a control. We do not include early tech-

nical feedback in these models given the high corre-

lation this variable has with early market feedback,

which is the better predictor.

In all these models, the control for resources

emerges as a significant predictor of product quality.

After adjusting relative performance for differences

in the development process, higher quality products

are associated with the use of additional resources.

Note also that generational experience is associated

with product quality in those models where the rela-

tionship between quality and resources is most sig-

nificant. Our final model, which contains all three

measures of the development process and the control,

explains 54.2% of the variance in product quality.

5. Discussion
The results described above highlight the impor-

tance of generating new information on performance

through establishing early links to the market. Varia-

tions in the percentage of functionality added to the

product after first prototype and first beta predict

more than one-third of the variance in product qual-

ity. This is an intriguing result. It suggests that in

a flexible process, development teams should focus,

above all, on getting an early (and by definition,

incomplete) version of the product into customers’

hands at the first opportunity. Thereafter, teams must

work with these customers to “coevolve” the design,

25 We also captured data on the average experience of team mem-

bers in years. We found no relationship between this measure of

experience and either product quality or resources.

144 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Table 3 Models Predicting Product Quality with Multiple Process Measures

MODEL IX X XI XII

Constant 4�423∗∗∗∗ 4�070∗∗∗∗ 4�304∗∗∗∗ 4�176∗∗∗∗

�0�067� �0�149� �0�151� �0�133�
Control: 0�369∗∗ 0�545∗∗∗ 0�341∗∗ 0�532∗∗∗

Resourcesa �t = 2�68� (t = 3�13� �t = 2�11� �t = 3�54�
Architecture 1�326∗∗ 2�097∗∗∗∗ 1�655∗∗∗

design effortb �0�505� �0�549� �0�496�
Market feedback: −0�270∗∗∗ −0�297∗∗∗ −0�225∗∗∗

First proto/betab �0�079� �0�083� �0�077�
Generational 0�007∗∗ 0�002 0�005∗∗

experience �0�003� �0�003� �0�002�

R-squared (adj) 47�3% 38�4% 34�3% 54�2%
F -ratio 8�47 6�19 5�52 8�41
Df 22 22 23 21

∗∗∗∗p < 0�1%� ∗∗∗p < 1%� ∗∗p < 5%� ∗p < 10% NB: Unless stated, numbers in brackets are standard errors.
a = adjusted for product complexity; b = adjusted for scale effect.

gathering feedback on the performance of existing

features, while being responsive to requests for addi-

tional functionality.

Achieving such tight integration between an emerg-

ing design and its application context, however, is

not trivial. Releasing beta versions of a system to

customers when significant parts of the functional-

ity remain incomplete creates a major architectural

challenge. Work must be partitioned and prioritized

in such a way that when only part of the function-

ality is developed, a few core modules can be inte-

grated to provide an early working version of the

system. While this version will have many features

missing, it must contain the essence of the product,

providing a baseline to which customers can react.

Further challenges are created by the need to respond

to new information later in the process, as the design

nears completion. This requires an architecture which

can accept new functionality in a way that mini-

mizes changes to the rest of the system. Without such

explicit architectural choices in the early stages of a

project, the potential for responding to new informa-

tion in the later stages is likely to be severely limited.

This discussion highlights the fact that investments

in architectural design play a dual role in a flexi-

ble process. They are required both to evaluate and

select between various architectural options, and also

to facilitate the flexibility of the development process

itself. Support for this view comes from the correla-

tion between investments in architectural design and

the percentage of product functionality developed

after the first system integration (see Appendix D).

This relationship suggests that projects that dedicate

greater resources to architectural design tend to be

able to integrate the product at an earlier stage of

development.

Our field observations also support the view

that investments in architectural design can facili-

tate a more flexible process. A program manager for

Microsoft’s Internet Explorer 3.0 project commented,

� � � the most important aspect of the project was that

we developed the product architecture in a way that

separate component teams could feed into the project.

The idea was to build a good core infrastructure, and

have the rest of the team add components on top of

it. In fact, at the first integration, all we had was the

core infrastructure. Most other features were missing.

Similarly, a manager at Altavista explained that

their

� � � architectural design efforts are structured to give

priority not to performance, but to independence. We

create interfaces to buffer the impact of uncertainty—

when one module changes, the others are therefore

insulated. If we were trying to optimize the size and

efficiency [of a design] we would not do this, but opti-

mizing a design typically makes it more complex and

subsequently very difficult to change.

Management Science/Vol. 47, No. 1, January 2001 145

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

The final topic our results illuminate is the sub-

tle role of experience in projects which face uncertain

and dynamic environments. Our hypothesis was that

a team with greater generational experience would

have a better ability to integrate new information into

the design during later project stages, thus improv-

ing the flexibility of the development process. Indeed,

support for this view comes from the correlation

observed between our measure of generational expe-

rience and the percentage of product functionality

developed after the first prototype and beta release

(see Appendix D). However, while generational expe-

rience is a significant predictor of quality in our final

model, the manner in which this effect emerges is

indirect. Our analysis shows that generational expe-

rience is associated with the use of fewer resources

to complete a project. Its association with product

quality only arises in models where a relationship

between quality and resources is also present (i.e.,

in more complex models). Our interpretation of this

result is that in uncertain and dynamic environments,

this type of experience is not useful in identify-

ing the requirements of customers, given that these

requirements are continually evolving. This experi-

ence is useful, however, in framing and directing the

experimentation strategy employed in a way that the

ongoing process of integrating new information into

the design is performed in the most efficient man-
ner. Given a trade-off between product quality and

resources, this gain in efficiency can be taken either

as a resource saving or as a quality gain.

6. Conclusion
This paper has demonstrated that several constructs

which support a more flexible development pro-

cess are associated with better-performing projects in

a highly uncertain and dynamic environment. This

flexible process is characterized by the ability to gen-

erate and respond to new information for a longer

proportion of a development cycle. The constructs

that support such a process are greater investments in

architectural design, earlier feedback on product per-

formance from the market, and the use of a devel-

opment team with greater amounts of generational

experience. In combination, these constructs explain

over 50% of the variation in product quality across a

sample of completed projects in the Internet software

industry.

From a practitioner’s perspective, implementing

a more flexible process requires thinking about the

product development process with a different mind-

set, given significant amounts of the perceived wis-

dom about good practice can run counter to the goals

of such a process. Take, for example, the notion that

a large number of design changes in the late stages

is a sign of a poor project. This is not true in the

environment we studied. Many excellent projects (as

judged by the quality of the final product) made

major changes to the design at late stages. Critically,

however, these projects possessed a process which

allowed them to do this.

An example of the change in mindset required in a

flexible process comes from our fieldwork at one firm.

The firm volunteered data on two projects, one which

they identified as a “successful” project, and the other

which they regarded to have been “poorly executed.”

When we analyzed the results, however, we found

quite the reverse. The successful project scored lower

on product quality and consumed relatively greater

resources (adjusted for complexity) than its suppos-

edly inferior partner. To identify why this misconcep-

tion arose, we reviewed our notes of the interviews

with each project manager. The “poorly executed”

project had involved a process of continual change, as

new developments emerged in the market and com-

petitive products were launched with features which

became competitive necessities. By contrast, the “suc-

cessful” project was run in a very structured fashion,

starting with a carefully optimized product architec-

ture, and followed by an approach to development

in which there was no flexibility to change this ini-

tial design. From the point of view of the senior

manager who had selected these projects, the first

appeared to be extremely chaotic in nature, given

that the specification changed continually through-

out development. By contrast, the second followed a

more controlled process, arriving at product launch

with a design which closely mirrored the initial spec-

ification. Through the lens of traditional development

practices, the latter appeared to be a much superior

process. The resulting design, however, being “frozen

146 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

in time” early in the project, was not well received by

the time it reached the market.

For the academy, this research provides empiri-

cal validation of the value of more flexible models

of development that have been proposed in the lit-

erature (e.g., Boehm 1988, Iansiti and MacCormack

1997). In particular, we have demonstrated the use-

fulness of a flexible model in an environment which

presents extremely high levels of uncertainty to devel-

opment teams. We note, however, that it is possi-

ble that the constructs we argue support a flexible

process may also be associated with project perfor-

mance in more stable environments.26 Further work is

needed to determine if this is the case. Indeed, fully

exploring the details of a contingent view of product

development process design would require a multi-

industry study to identify which parameters should

be regarded as universal “best practices,” and which

should be varied to suit the specifics of each particu-

lar context. This current study represents the first step

along just such a path.

26We expect that in more stable environments, the explanatory

power of these constructs would diminish, relative both to their

impact in more uncertain environments and to the explanatory

power of other variables that have been shown to predict project

success in stable settings.

Acknowledgments
The authors gratefully acknowledge the industry experts who

helped assess the quality of products in this research: Keith Allison,

Whit Andrews, Christofer Barr, Rik Drummond, James Farley,

Mark Frauenfelder, Carlo Ghezzi, Logan Harbaugh, Justin Hibbard,

Kevin Jones, Eric Lundquist, Melanie McMullen, Shawn Rogers,

Gus Venditto. We are also very grateful for the comments of Rocco

Mosconi and two anonymous reviewers.

Appendix A Controlling Project Resources for
Product Complexity

In order to control project resources for product complexity, we

capture the number of uncommented lines of new code developed

in each project. Although more advanced measures of software

complexity have been proposed in the software engineering liter-

ature (e.g., Halstead and Marciniak 1994) these metrics are rarely

computed by managers. We first compute the resources (in person-

days) that would have been required in each project to develop an

application of standard size (100,000 lines of code). Since software

productivity exhibits scale effects (Banker and Kemerer 1989), we

then model the relationship between standardized resources and

size as follows:

STDRESOURCES= a∗�NEWCODE�−b∗�1+c∗SERVICE�

Where:

STDRESOURCES: person-days required to develop

100’000 lines of new code;

NEWCODE: lines of uncommented code

developed;

SERVICE: dummy variable indicating project

is to develop a service;

a� b� c: parameters to be estimated.

Taking logarithms of each side we get:

ln �STDRESOURCES�= ln�a�− b∗�1+ c∗SERVICE�∗

ln �NEWCODE��or

ln �STDRESOURCES�= d− b∗ ln �NEWCODE�− e∗

SERVICE∗ ln �NEWCODE�;

where d, e are parameters to be estimated. The model predicts

much of the variation in standardized resources �F = 72�99� adj R2 =
83�7%� p < 0�01%�. We use the residuals from this model as our

measure of the excess of resources (or the lack of resources) allo-

cated to a project, after controlling for its complexity.

Management Science/Vol. 47, No. 1, January 2001 147

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Appendix B Controlling Measures of the Development Process for Scale Effects

In order to control for scale, we model several measures of the

development process as a function of the logarithm of the lines of

new code developed. In our analysis, we use the residuals from

these models as our adjusted measure.

Table 4 Models Predicting Measures of the Development Process

Architecture Functionality at Functionality at Functionality at
MODEL Design Effort First Prototype First Integration First Beta

Constant 1�027∗∗∗∗ 93�53∗∗∗ 133�502∗∗∗∗ 136�519∗∗∗∗

�0�172� �25�59� �21�21� �19�02�
Log (lines of new code) −0�072∗∗∗∗ −4�848∗∗ −6�733∗∗∗ −5�388∗∗∗

�0�016� �2�329� �1�930� �1�731�

R-squared (adj) 43�1% 10�3% 27�8% 23�1%
t-statistic −4�55 −2�08 −3�49 −3�11
Df 24 27 27 27

∗∗∗∗p < 0�1%� ∗∗∗p < 1%� ∗∗p < 5%� ∗p < 10%

Appendix C Descriptive Statistics for Adjusted Variables

Table 5 Descriptive Statistics for Adjusted Variables

Variablea Description S. Dev. Min Max

Resources Total development and test resources consumed 0�54 −0�91 0�76
in project adjusted for product complexity
(Person-days/100’000 lines of new code)

Architecture Ratio of architecture design resources to development 0�14 −0�31 0�28
Design Effort and test resources adjusted for scale effect
Market Feedback: Percentage of product functionality included in the 1 −2�33 1�76
First Proto/Betab first prototype and beta release, adjusted for

scale effect (composite measure)
Tech. Feedback: Percentage of product functionality included in the 19% −30% 39%
First Integration first system integration adjusted for scale effect

aMeasures have mean zero, given that they are residuals or a composite formed from residuals.
bThe statistics for market feedback are not comparable to that of technical feedback given that the former is a composite measure, and has therefore been
normalized (i.e., has mean zero and variance one).

148 Management Science/Vol. 47, No. 1, January 2001

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Appendix D Correlation Table

The table below contains correlations for all measures in their final

form (i.e., after adjusting for scale and complexity). We report the

measures of percentage functionality completed at each of the three

milestones separately for completeness. We also report correlations

for the composite measure of early market feedback.

Table 6 Correlation Table for Measures of the Development Process

Architect. Market Tech. Market
Design Feedback: Feedback: Feedback: Generation.

Quality Resources Effort 1. Prototype Integration 2. Beta Experience

Quality 1�000
Resources 0�025 1�000
Architecture 0�431∗∗ −0�323 1�000
Design Effort
Market Feedback: −0�415∗∗ 0�439∗∗ −0�141 1�000
1. First Prototype
Tech. Feedback: −0�423∗∗ 0�294 −0�336∗ 0�618∗∗∗∗ 1�000
First Integration
Market Feedback: −0�636∗∗∗∗ 0�132 −0�279 0�459∗∗ 0�481∗∗∗ 1�000
2. First Beta
Generational 0�176 −0�526∗∗∗ −0�054 −0�384∗∗ −0�223 −0�176 1�000
Experience
Market Feedback: −0�616∗∗∗∗ 0�341∗ −0�248 Not 0�643∗∗∗∗ Not −0�334∗

First Proto/Beta Applicable Applicable

∗∗∗∗p < 0�1%� ∗∗∗p < 1%� ∗∗p < 5%� ∗p < 10%

References
Argyris, C. 1977. Double-loop learning in organizations. Harvard

Bus. Rev. 55(Sep–Oct) 115–125.
Banker, R.D., C.F. Kemerer. 1989. Scale economies in new software

development. IEEE Trans. Software Engnrg. 15(10) 1199–1206.
Bhattacharya, S., V. Krishnan, V. Mahajan. 1998. Managing new

product definition in highly dynamic environments. Manage-
ment Sci. 44(11 Part 2) S50–S64.

Boehm, B. 1988. A spiral model of software development and

enhancement. IEEE Comput. 21 61–72.
Christensen, C.M., R. Rosenbloom. 1995. Explaining the attacker’s

advantage: Technological paradigms, organizational dynamics,

and the value network. Res. Policy 24 233–257.
Clark, K.B., T. Fujimoto. 1991. Product Development Performance. HBS

Press, Boston, MA.

Connell, J.L., L. Shafer. 1989. Structured Rapid Prototyping: An
Evolutionary Approach to Software Development. Yourdon Press,
Englewood Cliffs, NJ.

Cooper, R.G. 1990. Stage-gate systems: A new tool for managing

new products. Bus. Horizons 33(3) 44–54.
. 1995. Developing new products on time, in time. Res.-Tech.
Management 38(5) 49–57.

, E.J. Kleinschmidt. 1996. Winning businesses in product devel-

opment: The critical success factors. Res.-Tech. Management
39(4) 18–29.

Cusumano, M.A. 1991. Japan’s Software Factories. Oxford University
Press, New York.

, K. Nobeoka 1992. Strategy, structure and performance in

product development: Observations from the auto industry.

Res. Policy 22 265–293.
, R. Selby. 1995. Microsoft Secrets. Free Press, New York.

Dalkey, N., O. Helmer. 1963. An experimental application of the

delphi method to the use of experts. Management Sci. 9(3)
458–467.

Eisenhardt, K.M., B.N. Tabrizi. 1995. Accelerating adaptive pro-

cesses: Product innovation in the global computer industry.

Admin. Sci. Quart. 40 84–110.
Fiol, C.M., M.A. Lyles. 1985. Organizational learning. Acad. Man-

agement Rev. 10 803–813.
Halstead, M., J.J. Marciniak. 1994. Encyclopedia of Software Engineer-

ing. John Wiley & Sons, New York.

Henderson, R., K.B. Clark. 1990. Architectural innovation: The

reconfiguration of existing product technologies and the fail-

ure of established firms. Admin. Sci. Quart. 35 9–30.

Management Science/Vol. 47, No. 1, January 2001 149

MACCORMACK, VERGANTI, AND IANSITI
Developing Products on “Internet Time”

Iansiti, M. 1997. Technology Integration: Making Critical Choices in a
Dynamic World. HBS Press, Boston, MA.
, MacCormack. 1997. Developing products on Internet time.

Harvard Bus. Rev. 75(Sep–Oct) 108–117.
Katz, R., T.J. Allen. 1982. Investigating the not-invented-here (NIH)

syndrome: A look at the performance, tenure and communica-

tion patterns of 50 R&D project groups. R&D Management 12(1)
7–19.

Krishnan, V., S.D. Eppinger, D.E. Whitney. 1997. A model based

framework to overlap product development activities. Manage-
ment Sci. 43(4) 437–451.

Levinthal, D., J.G. March. 1981. A model of adaptive organizational

search. J. Econom. Behavior & Organ. 2 307–333.
Linstone, H.A., M. Turoff, eds. 1975. The Delphi Method: Techniques

and Applications. Addison-Wesley, Reading, MA.
MacCormack, A. 1998. Managing Adaptation: An Empirical Study

of Product Development in Rapidly Changing Environ-

ments. Unpublished doctoral dissertation, Harvard University,

Boston, MA.

March, J. 1991. Exploration and exploitation in organizational learn-

ing. Organ. Sci. 2(1) 71–87.
McKee, D. 1992. An organizational learning approach to product

innovation. J. Product Innovation Management 9 232–245.
Nelson, R., S. Winter. 1982. An Evolutionary Theory of Economic

Change. Harvard University Press, Cambridge, MA.
Parnas, D.L. 1972. On the criteria to be used in decomposing sys-

tems into modules. Comm. ACM 15 1053–1058.
Reid, R.H. 1997. Architects of the Web. John Wiley and Sons, New

York.

Royce, W.W. 1970. Managing the development of large soft-

ware systems: Concepts and techniques. Procedures WESCON,

Western Electric Show and Convention, Los Angeles.

Reprinted 1989 in Proc. 11th Int. Conf. of Software Engnrg.
Pittsburgh, PA.

Sanchez, R., J.T. Mahoney. 1996. Modularity, flexibility, and knowl-

edge management in product and organization design. Strate-
gic Management J. 17 63–76.

Thomke, S. 1997. The role of flexibility in the development of new

products: An empirical study. Res. Policy 26 105–119.
. 1998. Managing experimentation in the design of new prod-

ucts and processes. Management Sci. 44(6) 743–762.
, E.A. von Hippel, R.R. Franke. 1998. Modes of experimenta-

tion: An innovation process variable. Res. Policy 27 315–332.
Tushman, M.L., C.A. O’Reilly. 1997. Winning Through Innovation.

HBS Press, Boston, MA.

Ulrich, K.T. 1995. The role of product architecture in the manufac-

turing firm. Res. Policy 24 419–440.
, S.D. Eppinger. 1995. Product Design and Development.
McGraw-Hill, New York.

Verganti, R. 1999. Planned flexibility: Linking anticipation and reac-

tion in product development projects. J. Product Innovation
Management 16(4) 363–376.

Von Hippel, E. 1986. Lead users: A source of novel product con-

cepts. Management Sci. 32(7) 791–805.
. 1988. The Sources of Innovation. Oxford University Press,

New York.

Wheelwright, S.C., K.B. Clark. 1992. Revolutionizing Product Devel-
opment. Free Press, New York.

Wong, C. 1984. A successful software development. IEEE Trans.
Software Engnrg. SE-10(3) 714–727.

Accepted by Karl Ulrich; received April 18, 1999. This paper was with the authors 8 months for 2 revisions.

150 Management Science/Vol. 47, No. 1, January 2001

